Abstract

This paper presents a scheme for dual robust control of batch processes under parametric uncertainty. The dual-control paradigm arises in the context of adaptive control. A trade-off should be decided between the control actions that (robustly) optimize the plant performance and between those that excite the plant such that unknown plant model parameters can be learned precisely enough to increase the robust performance of the plant. Some recently proposed approaches can be used to tackle this problem, however, this will be done at the price of conservativeness or significant computational burden. In order to increase computational efficiency, we propose a scheme that uses parameterized conditions of optimality in the adaptive predictive-control fashion. The dual features of the controller are incorporated through scenario-based (multi-stage) approach, which allows for modeling of the adaptive robust decision problem and for projecting this decision into predictions of the controller. The proposed approach is illustrated on a case study from batch membrane filtration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.