Abstract

An enhanced SSDI (synchronized switch damping on inductor) approach is proposed to suppress the vibration of bladed disks in aero-engines. Different from the authors’ former work (MSSP, 2017; JIMSS, 2018) where a local SSDI circuit is shunted to the piezoelectric materials at each blade sector, in this work two blade sectors are interconnected by a shared SSDI circuit. In this way, the switching action of SSDI is triggered by the relative displacement between two blade sectors. The feasibility of the dual-connected SSDI is numerically examined by a 2-DOF (degree-of-freedom) mechanical system, and further experimentally validated on a single-beam and a double-beam system. Results show that the damping performance increases with the amplitude of relative displacement. This feature is especially favorable for the application of blisks where the blade normally vibrates in different amplitudes and phases. Eventually, we conduct numerical simulation on the forced response of mistuned bladed disk undergoing travelling wave excitation. Results show that the dual-connected configuration can reduce at least half the number of switching shunts while maintain nearly the same performance as the conventional (local) SSDI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.