Abstract

Optical coherence tomography based on time-stretch enables high frame rate and high-resolution imaging for the inertia-free wavelength-swept mechanism. The fundamental obstacle is still the acquisition bandwidth's restriction on imaging depth. By introducing dual-comb with slightly different repetition rates, the induced Vernier effect is found to be capable of relieving the problem. In our work, a dual-comb based time-stretch optical coherence tomography is proposed and experimentally demonstrated, achieving a 1.5-m imaging depth and 200-kHz A-scan rate. Moreover, about a 33.4-µm resolution and 25-µm accuracy are achieved. In addition, by adjusting the frequency detuning of the dual-comb, the A-scan rate can be further boosted to video-rate imaging. With enlarged imaging depth, this scheme is promising for a wide range of applications, including light detection and ranging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call