Abstract

A dual-color quantum dots-loaded nanoparticles (QPs) based lateral flow biosensor with single test line has been developed. Red and green emitted QPs were conjugated with antibodies and served as detecting probes in assays respectively, while the mixture of various antibodies were immobilized on nitrocellulose membranes as one detection line. Benefit from eliminating the heterogeneity caused by different position on the membrane, current biosensor achieved higher accuracy comparing with prevalent multi-lines or multi-strips lateral flow systems, which is of great significance for analyzing ratio-related diagnostics. The capability and reliability of the multiplex biosensor are also demonstrated by utilizing pepsinogen I (PG I) and pepsinogen II (PG II) as the model analytes. Under the optimal conditions, quantitative detection was achieved with ultra-low limits of detection at 6.9 pM (0.29 ng mL−1, PG I) and 15.7 pM (0.66 ng mL−1, PG II) respectively. The spectra crosstalk was negligible and no apparent cross-reaction was found in simultaneous detection. Furthermore, a good linear correlation of the QPs based lateral flow biosensor and commercial time-resolved fluoroimmunoassay was obtained in the detection of clinical samples, indicating the high reliability of the proposed biosensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call