Abstract
The green fluorescent protein (GFP) from the jellyfish, Aequorea victoria, has become a versatile reporter for monitoring gene expression and protein localization in a variety of cells and organisms. GFP emits bright green light ( λ max = 510 nm) when excited with ultraviolet (UV) or blue light ( λ max = 395 nm, minor peak at 470 nm). The chromophore in GFP is intrinsic to the primary structure of the protein, and fluorescence from GFP does not require additional gene products, substrates or other factors. GFP fluorescence is stable, species-independent and can be monitored noninvasively using the techniques of fluorescence microscopy and flow cytometry [Chalfie et al., Science 263 (1994) 802–805; Stearns, Curr. Biol. 5 (1995) 262–264]. The protein appears to undergo an autocatalytic reaction to create the fluorophore [Heim et al., Proc. Natl. Acad. Sci. USA 91 (1994) 12501–12504] in a process involving cyclization of a Tyr 66 aa residue. Recently [Delagrave et al., Bio/Technology 13 (1995) 151–154], a combinatorial mutagenic strategy was targeted at aa 64 through 69, which spans the chromophore of A. victoria GFP, yielding a number of different mutants with redshifted fluorescence excitation spectra. One of these, RSGFP4, retains the characteristic green emission spectra ( λ max = 505 nm), but has a single excitation peak ( λ max = 490 nm). The fluorescence properties of RSGFP4 are similar to those of another naturally occurring GFP from the sea pansy, Renilla reniformis [Ward and Cormier, Photobiochem. Photobiol. 27 (1978) 389–396]. In the present study, we demonstrate by fluorescence microscopy that selective excitation of A. victoria GFP and RSGFP4 allows for spectral separation of each fluorescent signal, and provides the means to image these signals independently in a mixed population of bacteria or mammalian cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.