Abstract

We previously reported molecular karyotype analysis of invasive breast tumour core needle biopsies by comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) (Walker et al, Genes Chromosomes Cancer, 2008 May;47(5):405-17). That study identified frequently recurring gains and losses involving chromosome bands 8q22 and 8p21, respectively. Moreover, these data highlighted an association between 8q22 gain and typically aggressive grade 3 tumors. Here we validate and extend our previous investigations through FISH analysis of tumor touch imprints prepared from excised breast tumor specimens. Compared to post-surgical tumor excisions, core needle biopsies are known to be histologically less precise when predicting tumor grade. Therefore investigating these chromosomal aberrations in tumor samples that offer more reliable pathological assessment is likely to give a better overall indication of association. A series of 60 breast tumors were screened for genomic copy number changes at 8q22 and 8p21 by dual-color FISH. Results confirm previous findings that 8p loss (39%) and 8q gain (74%) occur frequently in invasive breast cancer. Both absolute quantification of 8q22 gain across the sample cohort, and a separate relative assessment by 8q22:8p21 copy number ratio, showed that the incidence of 8q22 gain significantly increased with grade (p = 0.004, absolute and p = 0.02, relative). In contrast, no association was found between 8p21 loss and tumor grade. These findings support the notion that 8q22 is a region of interest for invasive breast cancer pathogenesis, potentially harboring one or more genes that, when amplified, precipitate the molecular events that define high tumor grade.

Highlights

  • Despite recent advances in our understanding of the molecular basis of breast cancer, classical histological grading of breast cancer remains prominent in routine histopathological practice [1,2,3]

  • Tumor histopathology of the 60 breast tumor samples imprinted for fluorescence in situ hybridization (FISH) analysis in this study is summarized in Supporting

  • Fifty six of the 60 tumors were histopathologically classified as invasive ductal carcinoma (IDC) and four were classified as invasive lobular carcinoma (ILC) (Supporting Information Table S1)

Read more

Summary

Introduction

Despite recent advances in our understanding of the molecular basis of breast cancer, classical histological grading of breast cancer remains prominent in routine histopathological practice [1,2,3]. This is because pathological assessment of tumour grade offers a rapid and relatively inexpensive measure of tumor cell proliferation, differentiation and overall disease aggressiveness, assisting the clinical ascertainment of risk of recurrence and choice of adjuvant therapies through such algorithms as the Nottingham. Issues of interobserver variability in the assessment of histological grade are a well recognised and ongoing challenge [6,7,8,9,10].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call