Abstract

We sought to establish a new orthotopic glioma model of nude mice by transfer of DsRed2, a red fluorescent protein gene, to malignant glioma cells and to perfuse the tissue with fluorescein isothiocyanate (FITC) dextran in vivo, which would permit the concurrent detection of brain tumor invasion and angiogenesis in vivo by florescence microscopy. 9L or U87 malignant glioma cells with DsRed2 expression were intracerebrally injected into the nude mice. FITC-dextran was administered intravenously to the mice bearing DsRed2-9L or DsRed2-U87 cells immediately before they were sacrificed at 10 days or 15 days after the implantation, respectively. Coronal vibratome sections were examined using 2D and 3D fluorescence microscopy and the results were compared with those examined by routine hematoxylin and eosin (H & E) staining. Angiogenesis induced by glioma was confirmed by two-dimensional and three-dimensional imaging analysis. DsRed2 fluorescence clearly demarcated the primary tumor margins and readily allowed for the visualization of local invasion at the single-cell level in the brain adjacent to tumor. We found that a few tumor cells migrated from the tumor mass along the aberrant microvasculature, but did not extend out of the angiogenic areas. However, locally invasive foci were very difficult to detect by H & E staining. We demonstrated, for the first time, that abnormal vascular structure and glioma cells can be visualized concurrently by fluorescence microscopy. This method is superior to H & E staining for the detection and study of physiologically relevant patterns of brain tumor invasion and angiogenesis in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call