Abstract

Dual-color fluorescence correlation spectroscopy is a biophysical technique that enables precise and sensitive analyzes of molecular interactions. It is unique in its ability to analyze reactions in real time at nanomolar substrate concentrations and below, especially when applied to the monitoring of enzyme-catalyzed reactions. Furthermore, it offers a wide range of accessible reactions, restricted only by the prerequisite that a chemical bond or a physical interaction between two spectrally distinguishable fluorophores is established or broken. Recently, the optical setup of dual-color fluorescence correlation spectroscopy has been extended toward two-photon excitation, resulting in several advantages compared with standard excitation, such as lower fluorescence background, an even larger spectrum of potential fluorescence dyes to be used, as well as a more stable and simplified optical setup. So far, the method has been successfully employed to analyze the kinetics of nucleic acid and peptide modifications catalyzed by nucleases, polymerases, and proteases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call