Abstract

A linear-to-rotary motion converter is demonstrated using 3-D SiGe/Si dual-chirality helical nanobelts (DCHNBs). Analytical and experimental investigation shows that the motion conversion has excellent linearity for small deflections. The conversion ratios of displacement and load for a SiGe/Si DCHNB (an 8-nm-thick Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.6</sub> Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.4</sub> and a 10-nm-thick Si layer) are found to be 171.3deg/mum and 2.110 times 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-6</sup> Nmiddotm/N, respectively. The stiffness (0.033 N/m) is much smaller than that of bottom-up synthesized helical nanostructures, which is promising for high-resolution force measurement in nanoelectromechanical systems. To perform torque measurement, two atomic force microscope cantilevers are used for simultaneous characterization of axial and radial properties of the same nanostructure. An application related to 3-D imaging is shown in a scanning electron microscope. The ultracompact size makes it possible for DCHNBs to serve as rotary stages for creating 3-D scanning probe microscopes or microgoniometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.