Abstract

A new nanofiltration (NF) hollow fiber membrane is developed by using two oppositely charged polyelectrolytes coagulating into a polyelectrolyte complex (PEC) onto polyether sulfone base polymer. The particular membrane architecture emerges during a single-step procedure, allowing setting both the porous negatively charged support of the hollow fiber and the separation layer containing also the positive polyelectrolyte (PEI/PDADMAC) through a single layer dry-jet wet spinning process. The novelty is two-pronged: the composition of the hollow fiber membrane itself and its fabrication procedure (one-step fabrication of membranes employing polyelectrolytes). These result in highly permeable hollow fiber membranes with a stable separation layer and performance at par with the membranes reported in literature obtained by multistep processes. More importantly, the membranes are obtained through a simple, very fast (one-step), and less expensive procedure. The best performance among these newly obtained hollow-fiber membranes is achieved by PD5% hollow fiber (MWCO of 300 Da), which showed 7.6 L/m(2)·h·bar permeability and ∼90% rejection of MgCl2, MgSO4, and Na2SO4 at 2 bar pressure. Thus, the resulting membranes not only have the advantages of the hollow-fiber configuration, but perform very well at extremely low pressures (the lowest reported in the literature). The broad impact of the results presented in this Article lies in the potential to dramatically reduce both the fabrication (duration and complexity) and the price and desalination costs of highly performing NF hollow fiber membranes. These might result in interesting potential applications and open new directions toward designing efficient functional NF hollow fibers for water desalination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.