Abstract

A conventional theranostic system usually employs a single fluorescence channel to show the pharmacokinetic events, which usually fails to quantitatively reveal the true cumulative drug release and with low accuracy. Herein, indocyanine green (ICG) and chlorins e6 (Ce6) are selected not only as conventional photothermal/photodynamic agents, but also to offer two independent fluorescence channels to cross validate the authenticity of pharmacokinetic events and to quantitatively reveal cumulative drug release in tumor tissues in a "turn on" manner. Employing the Ca2+ of amorphous calcium carbonate as a reversible linker, the photosensitivity and fluorescence of Ce6 are physically quenched by ICG during circulation to reduce the side effect of photodynamic therapy (PDT) while being readily restored in tumor tissue to reveal the quantitative drug release. Most importantly, the combination of photothermal therapy (PTT) and PDT allows low-temperature synergistic therapy of cancer through the controlled expression of heat shock protein in cells and mild hyperthermia enhanced reactive oxygen species diffusion/penetration among cells. This work not only develops a facile approach to fabricate a dual-channel theranostic system to precisely indicate the accumulation and quantitative drug release in tumor tissue, but also presents a unique low-temperature synergistic strategy to destroy tumor in aneffective and minimally invasive manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.