Abstract

We propose a refractive index (RI) sensor based on a tapered hole-assisted dual-core fiber (HADCF). The sensor is fabricated by splicing a tapered HADCF between two single-mode fibers and operates on the coupling between the fundamental mode and the low-order mode in two cores. The HADCF is tapered to meet the phase matching condition between the fundamental mode (LP01) in the central core and the low-order mode (LP11) in the eccentric core. The tapered waist of the fiber becomes thinner; the coupling wavelength has a blue shift. Glycerin solutions of different RIs were injected into the air hole. The RI sensitivity of 936.69 nm/RIU is obtained in the RI range of 1.335-1.360. The multi-channel RI sensor cascaded by HADCFs with different taper lengths is obtained and can simultaneously measure the RI of different solutions. The proposed device has the advantages of high sensitivity, simple structure, and stable performance. The special microfluidic channel in the HADCF can protect the tested solution from external environmental pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call