Abstract

Glutathione (GSH), homocysteine (Hcy) and cysteine (Cys) play important roles in many physiological processes. However, due to their structural and functional similarities, it is still a challenge to develop a probe that can differentiate between GSH and Hcy/Cys simultaneously. In this work, a luminescent probe Ir-NBD was designed and synthesized, which emit weakly due to the presence of photo induced electron transfer (PET) interaction. When it reacted with the three biothiols, NBD dissociated and luminescence of Ir-OH was enhanced in the near-infrared (NIR) region due to the disappearance of the PET effect. On the other hand, the products obtained from the reaction of GSH with NBD were hardly luminescent, but the products from the reaction of Hcy/Cys with NBD could undergo an intramolecular rearrangement, resulting in an enhanced luminescence of the solution in the visible region. Ir-NBD enabled highly selective and sensitive detection of GSH and Cys/Hcy in a relatively short time (15 min). The two luminescent colors were clearly differentiated without spectral interference and the detection limit reached 1.32 μM (GSH), 0.42 μM (Hcy) and 0.51 μM (Cys), respectively. Ir-NBD also had low cytotoxicity, it realized the simultaneous detection of GSH and Hcy/Cys by dual-channel luminescence, and also provided ideas for the design of multifunctional luminescent probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.