Abstract

The development of energy-efficient and environmentally friendly lithium extraction techniques is essential to meet the growing global demand for lithium-ion batteries. In this work, a dual-channel ion conductor membrane was designed for a concentration-driven lithium-selective ion diffusion process. The membrane was based on a porous lithium-ion conductor, and its pores were modified with an anion-exchange polymer. Thus, the sintered lithium-ion conductors provided highly selective cation transport channels, and the functionalized nanopores with positive charges enabled the complementary permeation of anions to balance the transmembrane charges. As a result, the dual-channel membrane realized an ultrahigh Li+/Na+ selectivity of ∼1389 with a competitive Li+ flux of 21.6 mmol·m-2·h-1 in a diffusion process of the LiCl/NaCl binary solution, which was capable of further maintaining the high selectivity over 7 days of testing. Therefore, this work demonstrates the great potential of the dual-channel membrane design for high-performing lithium extraction from aqueous resources with low energy consumption and minimal environmental impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call