Abstract

Uncertainty in absolute gain and crosstalk factors are the primary sources of error in dual-channel radar measurements. A full two-port calibration technique compensates for the errors introduced due to an imperfect antenna system and improves the isolation between orthogonal polarization channels as long as the observed cross section is above the equivalent system noise cross section. A novel technique for calibrating a dual-polarized network analyzer-based scatterometer system is discussed. Rigorous two-port S-parameter representation is used to describe absolute gain and crosstalk characteristics. Validity of the crosstalk correction is demonstrated by measuring the point target scattering matrix. Correction factors are obtained by measuring the S-parameters of trihedral and dihedral comer reflectors of known sizes. Results of absolute gain of the antenna system are verified using independent test target cross section measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.