Abstract

MRI radiomic features and machine learning have been used to predict brain metastasis (BM) stereotactic radiosurgery (SRS) outcomes. Previous studies used only single-center datasets, representing a significant barrier to clinical translation and further research. This study, therefore, presents the first dual-center validation of these techniques. SRS datasets were acquired from 2 centers (n = 123 BMs and n = 117 BMs). Each dataset contained 8 clinical features, 107 pretreatment T1w contrast-enhanced MRI radiomic features, and post-SRS BM progression endpoints determined from follow-up MRI. Random decision forest models were used with clinical and/or radiomic features to predict progression. 250 bootstrap repetitions were used for single-center experiments. Training a model with one center's dataset and testing it with the other center's dataset required using a set of features important for outcome prediction at both centers, and achieved area under the receiver operating characteristic curve (AUC) values up to 0.70. A model training methodology developed using the first center's dataset was locked and externally validated with the second center's dataset, achieving a bootstrap-corrected AUC of 0.80. Lastly, models trained on pooled data from both centers offered balanced accuracy across centers with an overall bootstrap-corrected AUC of 0.78. Using the presented validated methodology, radiomic models trained at a single center can be used externally, though they must utilize features important across all centers. These models' accuracies are inferior to those of models trained using each individual center's data. Pooling data across centers shows accurate and balanced performance, though further validation is required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call