Abstract

The dual boundary element method in the real domain proposed by Hong and Chen in 1988 is extended to the complex variable dual boundary element method. This novel method can simplify the calculation for a hypersingular integral, and an exact integration for the influence coefficients is obtained. In addition, the Hadamard integral formula is obtained by taking the derivative of the Cauchy integral formula. The two equations (the Cauchy and Hadamard integral formula) constitute the basis for the complex variable dual boundary integral equations. After discretizing the two equations, the complex variable dual boundary element method is implemented. In determining the influence coefficients, the residue for a single-order pole in the Cauchy formula is extended to one of higher order in the Hadamard formula. In addition, the use of a simple solution and equilibrium condition is employed to check the influence matrices. To extract the finite part in the Hadamard formula, the extended residue theorem is employed. The role of the Hadamard integral formula is examined for the boundary value problems with a degenerate boundary. Finally, some numerical examples, including the potential flow with a sheet pile and the torsion problem for a cracked bar, are considered to verify the validity of the proposed formulation. The results are compared with those of real dual BEM and analytical solutions where available. A good agreement is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.