Abstract

Optogenetics has been plagued by invasive brain implants and thermal effects during photo-modulation. Here, two upconversion hybrid nanoparticles modified with photothermal agents, named PT-UCNP-B/G, which can modulate neuronal activities via photostimulation and thermo-stimulation under near-infrared laser irradiation at 980nm and 808nm, respectively, are demonstrated. PT-UCNP-B/G emits visible light (410-500nm or 500-570nm) through the upconversion process at 980nm, while they exhibit efficient photothermal effect at 808nm with no visible emission and tissue damage. Intriguingly, PT-UCNP-B significantly activates extracellular sodium currents in neuro2a cells expressing light-gated channelrhodopsin-2 (ChR2) ion channels under 980-nm irradiation, and inhibits potassium currents in human embryonic kidney 293 cells expressing the voltage-gated potassium channels (KCNQ1) under 808-nm irradiation in vitro. Furthermore, deep-brain bidirectional modulation of feeding behavior is achieved under tether-free 980 or 808-nm illumination (0.8W cm-2 ) in mice stereotactically injected with PT-UCNP-B in the ChR2-expressing lateral hypothalamus region. Thus, PT-UCNP-B/G creates new possibility of utilizing both light and heat to modulate neural activities and provides a viable strategy to overcome the limits of optogenetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call