Abstract

AbstractIdiopathic pulmonary fibrosis (IPF) is an age‐related pulmonary interstitial disease with unclear etiology that poses a serious threat to human health. IPF interventions in clinical settings mainly involve oral medications, such as nintedanib (NIN), which exhibit limited accumulation in the lungs and neglect the epithelial micro‐environment. Inhalation is an efficient route for the treatment of pulmonary diseases. However, the mucus barrier in the trachea and the extracellular matrix (ECM) barrier in the interstitium are the two main obstacles to inhaled therapeutic agent delivery. Therefore, in this study, dual barrier‐penetrating inhaled liposomes (AN‐TR) are constructed utilizing tris‐(2‐carboxyethyl)‐phosphine (TCEP) and l‐arginine to penetrate the mucus and ECM barriers, respectively. This approach facilitates the thorough and uniform distribution of NIN and navitoclax (ABT‐263) across all five lung lobes. Furthermore, ABT‐263 can remove the senescent epithelial cells in the trachea and alveoli, thereby improving the efficiency of NIN for IPF treatment. This study suggests dual barrier‐penetrating inhaled liposomes as efficient noninvasive vehicles for first‐line clinical medications to improve the efficacy of IPF treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call