Abstract

A dual-band linear polarization transformer with diode-like asymmetric transmission using a three-layer composite metamaterial was proposed and investigated numerically. The proposed three-layer composite metamaterial was comprised of two layers of asymmetric split-ring resonators and a sub-wavelength cross structures sandwiched symmetrically between these layers. By introducing the sub-wavelength cross structure into the asymmetric chiral metamaterial, an electromagnetic wave tunneling effect formed for the incident waves. Thus, the transmissions in the composite structures can be strongly modified, one of the two off-diagonal cross-polarized transmission (txy) of the Jones matrix is enhanced while all the others (txx, tyy, and tyx) are suppressed extremely at resonances. This present design for enhancing asymmetric transmission via polarization conversion can be used as many novel devices, such as optical isolators, asymmetric wave splitters, and circulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.