Abstract

Abstract The significance of a cryptograph method lies in its ability to provide high fidelity, high security, and large capacity. The emergence of metasurface-empowered cryptography offers a promising alternative due to its unparalleled wavefront modulation capabilities and easy integration with traditional schemes. However, the majority of reported strategies suffer from limited capacity as a result of restricted independent information channels. In this study, we present a novel method of cryptography that utilizes a dual-band complex-amplitude meta-hologram. The method allows for the encoding of 225 different patterns by combining a modified visual secret-sharing scheme (VSS) and a one-time-pad private key. The use of complex-amplitude modulation and the modified VSS enhances the quality and fidelity of the decrypted results. Moreover, the transmission of the private key through a separate mechanism can greatly heighten the security, and different patterns can be generated simply by altering the private key. To demonstrate the feasibility of our approach, we design, fabricate, and characterize a meta-hologram prototype. The measured results are in good agreement with the numerical ones and the design objectives. Our proposed strategy offers high security, ultra-capacity, and high fidelity, making it highly promising for applications in information encryption and anti-counterfeiting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.