Abstract

A dual-band independently beam steering THz antenna is presented, which is composed of a broadband omnidirectional monopole source antenna surrounded by six hexagonal active frequency selective surface (AFSS) screens with switchable filtering response in two bands. By controlling the chemical potential from 0 eV to 0.5 eV, the AFSS screen can achieve the conversion between high transmission (ON state) and almost total reflection (OFF state) at two frequency ranges independently. Therefore, the radiation beams of the THz antenna in two bands can be steered from 360° large angle scanning and omnidirectional radiation with flexible combinations.

Highlights

  • A dual-band independently beam steering THz antenna is presented, which is composed of a broadband omnidirectional monopole source antenna surrounded by six hexagonal active frequency selective surface (AFSS) screens with switchable filtering response in two bands

  • Active frequency selective surfaces [5] have been widely used in the beam steering antennas [6,7]

  • We have demonstrated a large angle beam steering THz antenna using active frequency selective surface based on hybrid graphene-gold structure [26]

Read more

Summary

Introduction

A dual-band independently beam steering THz antenna is presented, which is composed of a broadband omnidirectional monopole source antenna surrounded by six hexagonal active frequency selective surface (AFSS) screens with switchable filtering response in two bands. We have demonstrated a large angle beam steering THz antenna using active frequency selective surface based on hybrid graphene-gold structure [26].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.