Abstract

In this study, a dual-polarized and dual band reflective Fresnel zone plate with reconfigurable beam is proposed on the basis of fractal frequency selective surface (FSS) unit with nearly 360° phase tunability. Firstly, a new phase distribution calculation strategy based on Fresnel diffraction theory is proposed to improve the performance under certain scenarios like sparse arrays. Then, a novel fractal shape is put forward and applied to the design of the Fresnel zone plate. The introduction of the fractal structure makes the unit cell perform dual band, dual polarization and 309° phase tunability characteristics. Due to the self-symmetry of the unit cell, the proposed fractal Fresnel zone plate (FFZP) is capable of beam steering in ± 45° in both TE and TM incident waves. Besides, the proposed structure shows small performance degradation when it comes to oblique incidence up to 45°, which decreases the focal diameter ratio and profile of the proposed FFZP. The operating bandwidth of the FFZP can reach up to 700 MHz at X and Ku bands. It is applicable in a wide range of RF and microwave settings such as satellite and base station.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.