Abstract

Let $\mathcal A$ be a dual Banach algebra with predual $\mathcal A_*$ and consider the following assertions: (A) $\mathcal A$ is Connes-amenable; (B) $\mathcal A$ has a normal, virtual diagonal; (C) $\mathcal A_*$ is an injective $\mathcal A$-bimodule. For general $\mathcal A$, all that is known is that (B) implies (A) whereas, for von Neumann algebras, (A), (B), and (C) are equivalent. We show that (C) always implies (B) whereas the converse is false for $\mathcal A = M(G)$ where $G$ is an infinite, locally compact group. Furthermore, we present partial solutions towards a characterization of (A) and (B) for $\mathcal A = B(G)$ in terms of $G$: For amenable, discrete $G$ as well as for certain compact $G$, they are equivalent to $G$ having an abelian subgroup of finite index. The question of whether or not (A) and (B) are always equivalent remains open. However, we introduce a modified definition of a normal, virtual diagonal and, using this modified definition, characterize the Connes-amenable, dual Banach algebras through the existence of an appropriate notion of virtual diagonal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.