Abstract

We describe a 'clock control unit' based on a dual-axis cubic cavity (DACC) for the frequency stabilisation of lasers involved in a strontium optical lattice clock. The DACC, which ultimately targets deployment in space applications, provides a short-term stable reference for all auxiliary lasers-i.e. cooling, clear-out, and optical lattice-in a single multi-band cavity. Long-term cavity drift is compensated by a feed-forward scheme exploiting a fixed physical relation to an orthogonal second cavity axis; either by reference to an ultrastable 698 nm clock laser, or by exploiting the differential drift between orthogonal axes extracted by a single laser in common view. Via a change of mirror set in the cavity axis accessed by the clock laser, the system could also provide stabilisation for sub-Hz linewidths at the 698 nm clock wavelength, fulfilling all stabilisation requirements of the clock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call