Abstract
Weakly Supervised Semantic Segmentation with image-level annotation uses localization maps from the classifier to generate pseudo labels. However, such localization maps focus only on sparse salient object regions, it is difficult to generate high-quality segmentation labels, which deviates from the requirement of semantic segmentation. To address this issue, we propose a dual-aware domain mining and cross-aware supervision (DDMCAS) method for weakly-supervised semantic segmentation. Specifically, we propose a dual-aware domain mining (DDM) module consisting of graph-based global reasoning unit and salient-region extension controller, which produces dense localization maps by exploring object features in salient regions and adjacent non-salient regions simultaneously. In order to further bridge the gap between salient regions and adjacent non-salient regions to generate more refined localization maps, we propose a cross-aware supervision (CAS) strategy to recover missing parts of the target objects and enhance weak attention in adjacent non-salient regions, leading to pseudo labels of higher quality for training the segmentation network. Based on the generated pseudo-labels, extensive experiments on PASCAL VOC 2012 dataset demonstrate that our method outperforms state-of-the-art methods using image-level labels for weakly supervised semantic segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.