Abstract

Forged videos are commonly spread online. Most have malicious content and cause serious information security problems. The most critical issue in deepfake detection is the identification of traces of tampering in fake videos. This study designs a Dual Attention Forgery Detection Network (DAFDN), which embeds a spatial reduction attention block (SRAB) and a forgery feature attention module (FFAM) to the backbone network. DAFDN embeds the two proposed attention mechanisms and enables the convolution neural network to extract peculiar traces left by images’ warping. This study uses two benchmark datasets, DFDC and FaceForensics++, to compare the performance of the proposed DAFDN with other methods. The results show that the proposed DAFDN mechanism achieves AUC scores of 0.911 and 0.945 in the datasets DFDC and FaceForensics++, respectively. These results are better than those of previously developed methods, such as XceptionNet and EfficientNet-related methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.