Abstract

All-weather personal thermal regulation has far been challenged by variable environments especially the regulatory failure caused by highly-dense solar radiation, low environmental radiation and the fluctuated epidermal moisture in different seasons. Herein, from the design of interface selectivity, dual-asymmetrically optical and wetting selective polylactic acid-based (PLA) Janus-type nanofabric is proposed to achieve on-demand radiative cooling and heating as well as sweat transportation. Hollow TiO2 particles are introduced in PLA nanofabric causing high interface scattering (∼99%) and infrared emission (∼91.2%) as well as surface hydrophobicity (CA > 140°). The strictly optical and wetting selectivity help achieve ∼12.8℃ of net cooling effect under > 1500 W/m2 of solar power and ∼5℃ of cooling advantage higher than cotton fabric and sweat resistance simultaneously. Contrarily, the semi-embedded Ag nanowires (AgNWs) with high conductivity (0.245 Ω/sq) endows the nanofabric with visible water permeability and excellent interface reflection for thermal radiation from body (>65%) thus causing ∼7℃ of thermal shielding. Through simple interface flipping, synergistical cooling-sweat reducing and warming-sweat resisting can be achieved to satisfy the thermal regulation in all weather. Compared with conventional fabrics, multi-functional Janus-type passive personal thermal management nanofabrics would be of great significance to achieve the personal health maintenance and energy sustainability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call