Abstract

SUMMARYAn S-R-S (Spherical-Revolute-Spherical) redundant manipulator is similar to a human arm and is often used to perform dexterous tasks. To solve the inverse kinematics analytically, the arm-angle was usually used to parameterise the self-motion. However, the previous studies have had shortcomings; some methods cannot avoid algorithm singularity and some are unsuitable for configuration control because they use a temporary reference plane. In this paper, we propose a method of analytical inverse kinematics resolution based on dual arm-angle parameterisation. By making use of two orthogonal vectors to define two absolute reference planes, we obtain two arm angles that satisfy a specific condition. The algorithm singularity problem is avoided because there is always at least one arm angle to represent the redundancy. The dual arm angle method overcomes the shortcomings of traditional methods and retains the advantages of the arm angle. Another contribution of this paper is the derivation of the absolute reference attitude matrix, which is the key to the resolution of analytical inverse kinematics but has not been previously addressed. The simulation results for typical cases that include the algorithm singularity condition verified our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.