Abstract
The impedance control of a dual-arm space robot in orbit auxiliary docking operation is studied. First, for the closed-chain hybrid system formed by the dual-arm space robot after capture operation, the dynamic equation of position uncontrolled and attitude controlled is established. The second-order linear impedance model and second-order approximate environment model are established for the problem of simultaneous output force/pose control of the end of the manipulator. Then, aiming at the transient performance control requirements of the dual-arm space robot auxiliary docking operation in orbit, a sliding mode controller with equivalent replacement of tracking errors is designed by introducing Prescribed Performance Control (PPC) theory. Next, Radial Basis Function Neural Networks (RBFNN) are used to accurately compensate for the modeling uncertainties of the system. Finally, the stability of the system is verified by Lyapunov stability determination. The simulation results show that the attitude control accuracy is better than 0.5°, the position control accuracy is better than 10−3 m, and the output force control accuracy is better than 0.5 N when it reaches 30 N. It also indicated that the proposed control algorithm can limit the transient performance of the controlled system within the preset range and achieve high-precision force/pose control, which ensures a more stable on-orbit auxiliary docking operation of the dual-arm space robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.