Abstract

Antioxidants represent a potential therapy for cerebral ischemia-reperfusion injury (CIRI). Compounds which exhibit both direct and indirect antioxidative activity may potentially exert improved effects. Hence, we aimed to assess whether the dual antioxidant DH-217, a derivative of DHAP clinically used to treat coronary heart disease, can reduce oxidative stress damage and elucidate the underlying mechanism. Hydrogen peroxide (H2O2)-induced and Middle Cerebral Artery Occlusion(MCAO)-induced damages were used to imitate oxidative stress. The antioxidation of DH-217 was determined by MTT, ROS, colony and DPPH assay. Besides, immunofluorescence, Real-Time PCR Analyses, western blotting and si-RNA/Plasmid-induced protein expression were used for mechanism validation. DPPH scavenging assay evidenced DH-217 was a well free radical scavenger. Cell survival assay also showed that DH-217 had a significant cytoprotection through direct and indirect clearance mechanisms. Further, it clearly inhibited oxidative stress-induced IkappaB kinase beta (IKKβ) phosphorylation and increased heme oxygenase-1 (HO-1) expression. Significantly, these antioxidant beneficial effects were reversed by HO-1 inhibitor, si-nuclear erythroid 2-related factor 2 (Nrf2) and IKKβ plasmid. Meanwhile, DH-217 had a good neuroprotective effect on CIRI rats. The dual antioxidant DH-217 has potential reference value for drug development of CIRI. Furthermore, inhibition of IKKβ phosphorylation and activation of Nrf2/HO-1 could be a promising antioxidant pathway. Dual antioxidant DH-217 not only has the ability of directly scavenging ROS, but also can clear it by targeting IKKβ/Nrf2/HO-1 signal axis. Inhibition of IKKβ phosphorylation and activation of Nrf2/HO-1 may be a promising antioxidant pathway for CIRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call