Abstract

To characterize the matrix metalloproteinases (MMP)-2 promoter and to identify androgen response elements (AREs) involved in androgen-induced MMP-2 expression. MMP-2 mRNA levels was determined by reverse transcription-polymerase chain reaction (RT-PCR). MMP-2 promoter-driven luciferase assays were used to determine the fragments responsible for androgen-induced activity. Chromatin-immunoprecipitation assay and electrophoretic mobility shift assays (EMSA) were used to verify the identified AREs in the MMP-2 promoter. Androgen significantly induced MMP-2 expression at the mRNA level, which was blocked by the androgen antagonist bicalutamide. Deletion of a region encompassing base pairs -1591 to -1259 (relative to the start codon) of the MMP-2 promoter led to a significant loss of androgen-induced reporter activity. Additional deletion of the 5'-region up to -562 bp further reduced the androgen-induced MMP-2 promoter activity. Sequence analysis of these two regions revealed two putative ARE motifs. Introducing mutations in the putative ARE motifs by site-directed mutagenesis approach resulted in a dramatic loss of androgen-induced MMP-2 promoter activity, indicating that the putative ARE motifs are required for androgen-stimulated MMP-2 expression. Most importantly, the androgen receptor (AR) interacted with both motif-containing promoter regions in vivo in a chromatin immunoprecipitation assay after androgen treatment. Furthermore, the AR specifically bound to the wild-type but not mutated ARE motifs-containing probes in an in vitro EMSA assay. Two ARE motifs were identified to be responsible for androgen-induced MMP-2 expression in prostate cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call