Abstract

Aggregation-induced emission (AIE) enables "Turn-On" imaging generally through single aggregation of the AIE luminogen (AIEgen). Dual aggregrations of the AIEgen might further enhance the imaging intensity and the consequent sensitivity. Herein, we rationally designed a near-infrared (NIR) AIEgen Ac-Trp-Glu-His-Asp-Cys(StBu)-Pra(QMT)-CBT (QMT-CBT) which, upon caspase1 (Cas1) activation, underwent a CBT-Cys click reaction to form cyclic dimers QMT-Dimer (the first aggregation) and assembled into nanoparticles (the second aggregation), turning the AIE signal "on" for enhanced imaging of Alzheimer's disease (AD). Molecular dynamics simulations validated that the fluorogen QMT in QMT-NPs stacked much tighter with each other than in the single aggregates of the control compound Ac-Trp-Glu-His-Asp-Cys(tBu)-Pra(QMT)-CBT (QMT-CBT-Ctrl). Dual aggregations of QMT rendered 1.9-, 1.7-, and 1.4-fold enhanced fluorescence intensities of its single aggregation in vitro, in cells, and in a living AD mouse model, respectively. We anticipate this smart fluorogen to be used for sensitive diagnosis of AD in the clinic in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.