Abstract
Chlorophyll (Chl) has great application potential in food colouring and nutritional supplementation. Since Chl is easily degraded, stability protection is vital to its application. Herein, a dual aggregation mechanism induced by high concentrations to improve Chl stability was proposed. As a result, the Chl retention at high concentrations increased to 323.92% of that at low concentrations. To explain aggregation, the Chl dimer was observed by atomic force microscopy, and a stable structural model of the Chl a “sandwich” dimer was established. It was proven that Chl dimer stability was dominated by van der Waals (vdW) interactions, while monomer orientation during aggregation was dominated by electrostatic interactions. Charge transfer (CT) was also shown to be a key interaction in the dimer. Excitation at 393 nm was first proposed for CT identification. This research hopes to provide new ideas for the design of food ingredients in human health promotion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.