Abstract

AbstractAdditive engineering is one of the most efficient approaches to improve not only photovoltaic performance but also phase stability of formamidinium (FA)‐based perovskite. Chlorine‐based additives, such as methylammonium chloride (MACl), have been in general used to improve phase stability of FAPbI3, which however often leads to loss of open‐circuit voltage Voc, accompanied by instability of the perovskite phase due to the volatile nature of the MA cation. A dual additive strategy for improving Voc and thereby the overall efficiency are reported here. The mixing ratio of MACl to CsCl is varied from [MACl]/[CsCl] = 4 to 1, where Voc increases with decreasing the ratio and best performance is achieved from [MACl]/[CsCl] = 2. As compared to the single source of MACl, the addition of CsCl reduces trap density and increases resistance against charge recombination, which is responsible for the increased Voc. Moreover, defect passivation achieved by dual additive enables better stability than the single additive MACl as confirmed by long‐term stability tests with unencapsulated devices for 50 days under relative humidity of about 40% at room temperature. The best power conversion efficiency of 23.22% is achieved by dual additive, which is higher than that for single additive of MACl or CsCl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.