Abstract

In atomic force microscopy (AFM) the imaging speed is strongly limited by the bandwidth of the feedback loop that controls the interaction between the measurement tip and the sample. A significant increase in closed-loop bandwidth can be achieved by combining a long-range, low-bandwidth actuator with a short-range, high-bandwidth actuator, forming a dual actuated system. This contribution discusses the design of a model-based feedback controller that controls the tip-sample interaction in dual actuated AFM. In order to guarantee closed-loop stability, the dynamic uncertainties of the system are identified and taken into account in the controller design. Two different design cases are discussed, showing the trade-off between the positioning range at lower frequencies and the positioning range at higher frequencies. The designed feedback controller is implemented on the prototype AFM system and demonstrates a disturbance rejection bandwidth of 20 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.