Abstract
Previous attempts to delineate the consequences of Galpha (q) activation in cardiomyocytes relied largely on molecular strategies in cultures or transgenic mice. Modest levels of wild-type Galpha(q) overexpression induce stable cardiac hypertrophy, whereas intense Galpha(q) stimulation induces cardiomyocyte apoptosis. The precise mechanism(s) whereby traditional targets of Galpha (q) subunits that induce hypertrophy also trigger cardiomyocyte apoptosis is not obvious and is explored with recombinant Pasteurella multocida toxin (rPMT, a Galpha(q) agonist). Cells cultured with rPMT display cardiomyocyte enlargement, sarcomeric organization, and increased atrial natriuretic factor expression in association with activation of phospholipase C, novel protein kinase C (PKC) isoforms, extracellular signal-regulated protein kinase (ERK), and (to a lesser extent) JNK/p38-MAPK. rPMT stimulates the ERK cascade via epidermal growth factor (EGF) receptor transactivation in cardiac fibroblasts, but EGF receptor transactivation plays no role in ERK activation in cardiomyocytes. Surprisingly, rPMT (or novel PKC isoform activation by PMA) decreases basal Akt phosphorylation; rPMT prevents Akt phosphorylation by EGF or IGF-1 and functionally augments cardiomyocyte apoptosis in response to H2O2. These results identify a Galpha(q)-PKC pathway that represses basal Akt phosphorylation and impairs Akt stimulation by survival factors. Because inhibition of Akt enhances cardiomyocyte susceptibility to apoptosis, this pathway is predicted to contribute to the transition from hypertrophy to cardiac decompensation and could be targeted for therapy in heart failure.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.