Abstract

The unbridled growth of the Internet and the network-based applications has contributed to enormous security leaks. Even the cryptographic protocols, which are used to provide secure communication, are often targeted by diverse attacks. Intrusion detection systems (IDSs) are often employed to monitor network traffic and host activities that may lead to unauthorized accesses and attacks against vulnerable services. Most of the conventional misuse-based and anomaly-based IDSs are ineffective against attacks targeted at encrypted protocols since they heavily rely on inspecting the payload contents. To combat against attacks on encrypted protocols, we propose an anomaly-based detection system by using strategically distributed monitoring stubs (MSs). We have categorized various attacks against cryptographic protocols. The MSs, by sniffing the encrypted traffic, extract features for detecting these attacks and construct normal usage behavior profiles. Upon detecting suspicious activities due to the deviations from these normal profiles, the MSs notify the victim servers, which may then take necessary actions. In addition to detecting attacks, the MSs can also trace back the originating network of the attack. We call our unique approach DTRAB since it focuses on both Detection and TRAceBack in the MS level. The effectiveness of the proposed detection and traceback methods are verified through extensive simulations and Internet datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.