Abstract

Existing timing analysis techniques to derive Worst-Case Execution Time (WCET) estimates assume that hardware in the target platform (e.g., the CPU) is fault-free. Given the performance requirements increase in current Critical Real-Time Embedded Systems (CRTES), the use of high-performance features and smaller transistors in current and future hardware becomes a must. The use of smaller transistors helps providing more performance while maintaining low energy budgets, however, hardware fault rates increase noticeably, affecting the temporal behaviour of the system in general, and WCET in particular. In this paper, we reconcile these two emergent needs of CRTES, namely, tight (and trustworthy) WCET estimates and the use of hardware implemented with smaller transistors. To that end we propose the Degraded Test Mode (DTM) that, in combination with fault-tolerant hardware designs and probabilistic timing analysis techniques, (i) enables the computation of tight and trustworthy WCET estimates in the presence of faults, (ii) provides graceful average and worst-case performance degradation due to faults, and (iii) requires modifications neither in WCET analysis tools nor in applications. Our results show that DTM allows accounting for the effect of faults at analysis time with low impact in WCET estimates and negligible hardware modifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call