Abstract

In recent years, diffusion tensor imaging (DTI) has become a popular in vivo diagnostic imaging technique in Radiological sciences. In order for this imaging technique to be more effective, proper image analysis techniques suited for analyzing these high dimensional data need to be developed. In this paper, we present a novel definition of tensor "distance" grounded in concepts from information theory and incorporate it in the segmentation of DTI. In a DTI, the symmetric positive definite (SPD) diffusion tensor at each voxel can be interpreted as the covariance matrix of a local Gaussian distribution. Thus, a natural measure of dissimilarity between SPD tensors would be the Kullback-Leibler (KL) divergence or its relative. We propose the square root of the J-divergence (symmetrized KL) between two Gaussian distributions corresponding to the diffusion tensors being compared and this leads to a novel closed form expression for the "distance" as well as the mean value of a DTI. Unlike the traditional Frobenius norm-based tensor distance, our "distance" is affine invariant, a desirable property in segmentation and many other applications. We then incorporate this new tensor "distance" in a region based active contour model for DTI segmentation. Synthetic and real data experiments are shown to depict the performance of the proposed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call