Abstract

Automated classification of Alzheimer’s disease (AD) plays a key role in the diagnosis of dementia. In this paper, we solve for the first time a direct four-class classification problem, namely, AD, Normal Control (CN), Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) by processing Diffusion Tensor Imaging (DTI) in 3D. DTI provides information on brain anatomy in form of Fractional Anisotropy (FA) and Mean Diffusivity (MD) along with Echo Planar Imaging (EPI) intensities. We separately train CNNs, more specifically, VoxCNNs on FA values, MD values, and EPI intensities on 3D DTI scan volumes. In addition, we feed average FA and MD values for each brain region, derived according to the Colin27 brain atlas, into a random forest classifier (RFC). These four (three separately trained VoxCNNs and one RFC) models are first applied in isolation for the above four-class classification problem. Individual classification results are then fused at the decision level using a modulated rank averaging strategy leading to a classification accuracy of 92.6%. Comprehensive experimentation on publicly available ADNI database clearly demonstrates the effectiveness of the proposed solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call