Abstract

Effectively capturing the status information and improving situational awareness is the most important task in disaster information management. Due to the rapid increase of online information, this task becomes very challenging. Existing information retrieval and text summarization methods can solve information overload problem to some extent, however, they suffer from some limitations: lacking theme structure, ignoring spatial information, and unable to update information on the real time events. In this paper, we propose a dynamic disaster storyline generation framework, which generates a global storyline describing the evolution of the disaster events in the high-level layer and provides condensed information about specific regions affected by the disaster in the local-level layer. The proposed framework considers both uniqueness and relevance for representative document selection, uses Maximal Marginal Relevance to generate summaries from each local document set, and utilizes dynamic Steiner tree to implement the information update. Comprehensive experiments on typhoons data sets demonstrate the effectiveness of the proposed methods in each level and the overall framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.