Abstract

In this paper, direct torque control (DTC) of five-phase induction motor (FPIM) is implemented using three-level neutral point clamped (TL-NPC) inverter. One of the advantages of three-level inverter over two-level one for DTC operation is the low torque ripple. Also TL-NPC inverter through space vector modulation technique gives low $ dv/dt$ transition with better voltage waveform. By applying conventional lookup table for DTC, the TL-NPC inverter does not ensures lower $dv/dt$ transition. In this paper, a novel switching scheme for DTC of FPIM using TL-NPC inverter is proposed that ensures the low $ dv/dt$ transition and balancing of dc-link capacitor voltages of TL-NPC inverter. To form the lookup table for DTC operation, instead of using voltage vectors directly, virtual vectors (VVs) are utilized. Two switching states are used in one sample time to generate a VV in $\alpha \beta$ plane, which gives zero resultant voltage in $ xy$ plane. The switching strategy ensures low number of transitions to reduce the switching losses. The switching state redundancies are used in a novel way to balance the dc-link capacitor voltages without using any additional hardware. The proposed technique to balance the dc-link capacitor voltage gives lower switching frequency. The MATLAB/Simulink environment is used for the simulation and the results are validated through experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.