Abstract

Vehicular Ad Hoc Network (VANET) is an important part of the modern intelligent transportation system, which can provide vehicle communication at a certain distance. More importantly, VANET can provide route planning and autonomous driving for drivers by analyzing data. However, VANET’s data privacy and security are a huge challenge when serving drivers. In this paper, we propose a VANET data-sharing model (DSVN) that combines ciphertext-based attribute encryption (CP-ABE), blockchain, and InterPlanetary File System (IPFS). DSVN uses an outsourced and revocable ciphertext policy attribute-based encryption (ORCP-ABE) scheme, which is improved based on CP-ABE. ORCP-ABE uses key encryption key (KEK) trees to manage user attribute groups and revoke user-level attributes. It eliminates redundant attributes in the access policy by attribute-weighted access trees. Moreover, DSVN has no single point of failure. We demonstrate the indistinguishability under the chosen-plaintext attack (IND-CPA) security of DSVN by a game based on the computational Diffie–Hellman (CDH) assumption. Experimental results show that DSVN can store and share data with low overhead. Additionally, it can revoke attributes of users safely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call