Abstract

BackgroundInflammatory bowel disease (IBD) is established to drive pathological sequelae in organ systems outside the intestine, including the central nervous system (CNS). Many patients exhibit cognitive deficits, particularly during disease flare. The connection between colonic inflammation and neuroinflammation remains unclear and characterization of the neuroinflammatory phenotype in the brain during colitis is ill-defined.MethodsTransgenic mice expressing a bioluminescent reporter of active caspase-1 were treated with 2% dextran sodium sulfate (DSS) for 7 days to induce acute colitis, and colonic, systemic and neuroinflammation were assessed. In some experiments, mice were prophylactically treated with paquinimod (ABR-215757) to inhibit S100A9 inflammatory signaling. As a positive control for peripheral-induced neuroinflammation, mice were injected with lipopolysaccharide (LPS). Colonic, systemic and brain inflammatory cytokines and chemokines were measured by cytokine bead array (CBA) and Proteome profiler mouse cytokine array. Bioluminescence was quantified in the brain and caspase activation was confirmed by immunoblot. Immune cell infiltration into the CNS was measured by flow cytometry, while light sheet microscopy was used to monitor changes in resident microglia localization in intact brains during DSS or LPS-induced neuroinflammation. RNA sequencing was performed to identify transcriptomic changes occurring in the CNS of DSS-treated mice. Expression of inflammatory biomarkers were quantified in the brain and serum by qRT-PCR, ELISA and WB.ResultsDSS-treated mice exhibited clinical hallmarks of colitis, including weight loss, colonic shortening and inflammation in the colon. We also detected a significant increase in inflammatory cytokines in the serum and brain, as well as caspase and microglia activation in the brain of mice with ongoing colitis. RNA sequencing of brains isolated from DSS-treated mice revealed differential expression of genes involved in the regulation of inflammatory responses. This inflammatory phenotype was similar to the signature detected in LPS-treated mice, albeit less robust and transient, as inflammatory gene expression returned to baseline following cessation of DSS. Pharmacological inhibition of S100A9, one of the transcripts identified by RNA sequencing, attenuated colitis severity and systemic and neuroinflammation.ConclusionsOur findings suggest that local inflammation in the colon drives systemic inflammation and neuroinflammation, and this can be ameliorated by inhibition of the S100 alarmin, S100A9.

Highlights

  • Inflammatory bowel disease (IBD) is established to drive pathological sequelae in organ systems outside the intestine, including the central nervous system (CNS)

  • Our findings suggest that local inflammation in the colon drives systemic inflammation and neuroinflammation, and this can be ameliorated by inhibition of the S100 alarmin, S100A9

  • We tested whether the induction of colitis could drive inflammasome activation in other tissues, the CNS

Read more

Summary

Introduction

Inflammatory bowel disease (IBD) is established to drive pathological sequelae in organ systems outside the intestine, including the central nervous system (CNS). In CD, inflammation is transmural, producing segmented lesions that can occur in any part of the gastrointestinal tract [3]. Both UC and CD are life-long diseases that cycle between periods of active flare and remission. While pathology primarily affects the intestine, extraintestinal manifestations are prevalent and can involve virtually any organ site [3,4,5]. In this regard, IBD is increasingly linked to CNS inflammation and behavioral alterations in patients. Understanding the mechanistic basis of this connection between colonic inflammatory disease and neurological manifestations will be necessary to develop therapies designed to alleviate or prevent colitisinduced CNS dysfunction

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call