Abstract
This paper describes the design and the implementation of a self-tuning integral-proportional (IP) speed controller for a rolling mill DC motor drive system, based on a 32-bit floating point digital signal processor (DSP)-TMS 320C30. To get a better transient response than conventional proportional-integral (PI) and/or integral-proportional (IP) speed control in the presence of transient disturbance and/or parameter variations, an adaptive self-tuning IP speed control with load torque feedforward compensation was used. The model parameters, related to motor and load inertia and damping coefficient, were estimated online by using recursive extended least squares (RELS) estimation algorithm. On the basis of the estimated model parameters and a pole-placement design, a control signal was calculated. Digital simulation and experimental results showed that the proposed controller possesses excellent adaptation capability under parameter change and a better transient recovery characteristic than a conventional PI/IP controller under load change. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.