Abstract

Purpose – The active power filter with two-level inverter needs a high-rating coupling transformer for high-power applications. This complicates the control and system becomes bulky and expensive. The purpose of this paper is to motivate the use of multilevel inverter as harmonic filter, which eliminates the coupling transformer and allows direct control of the power circuit. The advancement in artificial intelligence (AI) for computation is explored for controller design. Design/methodology/approach – The proposed scheme has a five-level cascaded H-bridge multilevel inverter (CHBMLI) as a harmonic filter. The control scheme includes one neural network controller and two fuzzy logic-based controllers for harmonic extraction, dc capacitor voltage balancing, and compensating current adjustment, respectively. The topology is modeled in MATLAB/SIMULINK and implemented using dSPACE DS1103 interface for experimentation. Findings – The exhaustive simulation and experimental results demonstrate the robustness and effectiveness of the proposed topology and controllers for harmonic minimization for RL/RC load and change in load. The comparison between traditional PI controller and proposed AI-based controller is presented. It indicates that the AI-based controller is fast, dynamic, and adaptive to accommodate the changes in load. The total harmonic distortion obtained by applying AI-based controllers are well within the IEEE519 std. limits. Originality/value – The simulation of high-power, medium-voltage system is presented and a downscaled prototype is designed and developed for implementation. The laboratory module of CHBMLI-based harmonic filter and AI-based controllers modeled in SIMULINK is executed using dSPACE DS1103 interface through real time workshop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.