Abstract

This paper presents a new lightning search algorithm (LSA) to enhance the piezoelectric energy harvesting system converter (PEHSC) using the dSPACE DS1104 controller board as the proportional-integral voltage controller (PIVC). To extract the energy from the vibration is challenging and difficult due to the uncertain behavior of vibration. Since the piezoelectric vibration transducer generates low AC voltage output with fluctuations and harmonics, it is difficult to control this low-level signal of various magnitudes. Therefore, the behavior of the converter is governed by its controller. The traditional PIVC process for improved parameter values of proportional gain (Kp) and integral gain (Ki) is commonly implemented via trial and error, which does not lead to an acceptable response in several conditions. Hence, this paper offers a method for finding the optimal Kp and Ki values for PIVC that eliminates the time-consuming conventional trial-and-error process. This method is applied to PEHSC development by producing values of Kp and Ki performed in the PIVC depending on the estimated outcomes of the objective function defined via LSA. The mean absolute error (MAE) is used as the objective function for reducing the output error of the PEHSC. The LSA optimizes the Kp and Ki values that give the minimum MAE, and the effect on the PEHSC is in terms of the rising and settling times. The development process and efficiency of the PIVC are demonstrated and examined via simulations using the MATLAB tools. The LSA-based PIVC (LSA-PI) is compared with the particle swarm optimization (PSO)-based PIVC (PSO-PI) and the backtracking search algorithm (BSA)-based PIVC (BSA-PI). The performance of the LSA-PI-based PIVC is then validated through hardware implementation using the dSPACE DS1104 control board. The simulation results are compared with the hardware results of PEHSC to validate the overall efficiency of the system. Finally, the results are regulated at an output of 7 V DC from an input range of 150 mV~250 mV AC at 30 Hz through a closed-loop using the LSA-PIVC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.