Abstract

BackgroundIchthyosis describes a localized or generalized hereditary cornification disorder caused by an impaired terminal keratinocyte differentiation resulting in excessive stratum corneum with the formation of more or less adherent scales. Ichthyosis affects humans and animals. Two rare bovine forms are reported, the severe harlequin ichthyosis and the less severe congenital ichthyosis, both characterized by a severe orthokeratotic lamellar hyperkeratosis.ResultsA 2-weeks-old purebred Scottish Highland calf was referred because of a syndrome resembling congenital ichthyosis. The clinical phenotype included diffuse alopecia and a markedly lichenified skin covered with large and excessive scales. Additionally, conjunctivitis and ulceration of the cornea were noted. Post-mortem examination revealed deep fissures in the diffusely thickened tongue and histopathological findings in the skin confirmed the clinical diagnosis. Whole-genome sequencing of the affected calf and comparison of the data with control genomes was performed. A search for private variants in known candidate genes for skin phenotypes including genes related with erosive and hyperkeratotic lesions revealed a single homozygous protein-changing variant, DSP: c.6893 C>A, or p.Ala2298Asp. The variant is predicted to change a highly conserved residue in the C-terminal plakin domain of the desmoplakin protein, which represents a main intracellular component of desmosomes, important intercellular adhesion molecules in various tissues including epidermis. Sanger sequencing confirmed the variant was homozygous in the affected calf and heterozygous in both parents. Further genotyping of 257 Scottish Highland animals from Switzerland revealed an estimated allele frequency of 1.2%. The mutant allele was absent in more than 4800 controls from various other cattle breeds.ConclusionsThis study represents the first report of combined lesions compatible with congenital ichthyosis, alopecia, acantholysis of the tongue and corneal defects associated with a DSP missense variant as the most likely underlying cause. To the best of our knowledge, this study is also the first report of a DSP-related syndromic form of congenital ichthyosis in domestic animals. The results of our study enable genetic testing to avoid the unintentional occurrence of further affected cattle. The findings were added to the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002243-9913).

Highlights

  • Ichthyosis describes a localized or generalized hereditary cornification disorder caused by an impaired terminal keratinocyte differentiation resulting in excessive stratum corneum with the formation of more or less adherent scales

  • The skin lesions are compatible with congenital ichthyosis, which has never been reported in a purebred Scottish Highland calf

  • More than 120 dominant and recessive DSP variants have been reported to be associated with skin, hair and/or heart defects such as dominant inherited arrhythmogenic right ventricular cardiomyopathy (OMIM 615,821) and recessive inherited Carvajal syndrome (OMIM 605,676) characterized by an extreme type of dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia associated with woolly hair and epidermolytic palmoplantar keratoderma

Read more

Summary

Introduction

Ichthyosis describes a localized or generalized hereditary cornification disorder caused by an impaired terminal keratinocyte differentiation resulting in excessive stratum corneum with the formation of more or less adherent scales. Ichthyoses encompass a heterogeneous group of congenital disorders characterized by an abnormal terminal keratinocyte differentiation [1]. They are linked by the common finding of a thickened stratum corneum resulting in localized or generalized scaling. The large group of recessively inherited disorders with congenitally appearing ichthyosis but no extra-cutaneous involvement is heterogeneous and can be subdivided in three clinical phenotypes: (1) Harlequin ichthyosis representing the most severe, mostly lethal phenotype; (2) congenital ichthyosis associated with erythema and fine white scales; and (3) lamellar ichthyosis characterized by large dark scales [3]. The various forms of ichthyosis are associated with variants in at least 50 genes encoding structural proteins and enzymes affecting several cellular functions including DNA repair, lipid biosynthesis, adhesion, desquamation, as well as other pathways [1,2,3,4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.