Abstract

Power electronic Grid-Connected Converters (GCCs) are widely applied as grid interface in renewable energy sources. This paper proposes an extended Direct Power Control with Space Vector Modulation (DPC-SVM) scheme with improved operation performance under grid distortions. The real-time operated DPC-SVM scheme has to execute several important tasks as: space vector pulse width modulation, active and reactive power feedback control, grid current harmonics and voltage dips compensation. Thus, development and implementation of the DPC-SVM algorithm using single chip floating-point microcontroller TMS320F28335 is described. It combines large peripheral equipment, typical for microcontrollers, with high computation capacity characteristic for Digital Signal Processors (DSPs). The novelty of the proposed system lies in extension of the generic DPC-SVM scheme by additional higher harmonic and voltage dips compensation modules and implementation of the whole algorithm in a single chip floating point microcontroller. Overview of the laboratory setup, description of basic algorithm subtasks sequence, software optimization as well as execution time of specific program modules on fixed-point and floating-point processors are discussed. Selected oscillograms illustrating operation and robustness of the developed algorithm used in 5 kVA laboratory model of the GCC are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call